MATERIAL LISTING

STANDARD ANALYSES PRODUCED BY AECCO

Principal Featur	Meli Poi	High Temperature Properties Creep Stress PSI 1% 10,000 hrs**			Nominal Composition (Phosphorus and Sulfur = 0.04 max)										Other Material	
	0	2000°F	1800°F	1600°F	Other	Fe	Со	W	Mo*	Si*	Mn*	C	Cr	Ni	Material	Grades Material
Excellent resistance to oxidation and sulfur-containing atmospheres, with good wear resistance. Used	27	-	360	750	-	Bal	-	-	0.50	2.0	1.0	0.50*	28	4*	Wrought 446	HC
Excellent corrosion and wear characteristics up to 2000°F. Used for rollers, journals, burner nozzles	26	400	1400	2400	-	Bal	-	-	0.50	2.0	2.0	0.3	28	10	Wrought 312	HE
Excellent resistance to corrosion and heat up to 1200°F. Used for grates, furnace parts, burner tips,	25	-	-	3900	-	Bal	-	-	0.50	2.0	2.0	0.3	20	10	Wrought 302B	HF
Excellent resistance to corrosion and heat up to 1200°F. Also used up to 2000°F in applications whe Used for furnace parts, trays, radiant tubes, and fixtures in moderate applications.	25	800	2100	3900	-	Bal	-	-	0.50	2.0	2.0	0.3	26	12	Wrought 309	HH2
Excellent hot gas corrosion and oxidation resistance up to 2100°F, and good high temperature streng Susceptible to embrittlement from sigma formation.	25	650	2500	6000	-	Bal	-	-	0.50	2.0	2.0	0.4	26	20	Wrought 310	НК
Similar to HK material, but greater resistance to corrosion by hot gases, particularly those containing from sigma formation.	26	-	2200	4300	-	Bal	-	-	0.50	2.0	2.0	0.4	30	20	-	HL
Similar to HK material, but greater strength at temperatures in excess of 1850°F and greater resista	25	1040	2400	6300	-	Bal	-	-	0.50	2.0	2.0	0.3	21	25	-	HN
Excellent resistance to oxidation and carburization up to 2000°F. Resists thermal shock from heating enameling fixtures, retorts, belts, and chains.	24	500	2000	4500	-	Bal	-	-	0.50	2.5	2.0	0.5	17	35	Wrought 330	HT
Similar to HT material, with less resistance to thermal shock but greater strength. Not susceptible to	24	1000	2800	5800	-	Bal	-	-	0.50	2.5	2.0	0.5	26	35	-	HP
Similar to HT material, but with greater resistance to rapid thermal shock and greater strength and co at 1600-1800°F. Used for trays, baskets, fixtures, radiant tubes, furnace parts, retorts, belts, chains	24	600	2200	5000	-	Bal	-	-	0.50	2.5	2.0	0.5	19	39	-	HU
Has less strength than HT or HU alloy, but greater resistance to carburization and thermal shock up to	23	-	1400	3000	-	Bal	-	-	0.50	2.5	2.0	0.5	12	60	-	HW
Similar to HW alloy, but has even greater strength and resistance to hot gas corrosion up to 2100°F. quenches. Used for trays, baskets, fixtures, hearth plates, enameling tools, and retorts where therm	23	600	1600	3200	-	Bal	-	-	0.50	2.5	2.0	0.5	17	66	-	ΗХ

COMMON SUPER & SPECIALTY ALLOYS PRODUCED BY AECCO

Proprietary Other Grades Material			(Compositi Sulfur =		ıax)			High Temperature Properties Creep Stress PSI 1% 10,000 hrs**			Melting Point	Principal Featur	
Grades	Malerial	Ni	Cr	C	Mn*	Si*	Мо	W	Co	Fe	Other	1600°F	1800°F	2000°F	°F	
NC24	Alloy 25	10	20	0.5	2	1	-	15	Bal	3*	-	8900 (1000 h)	3000 (1000 h)	-	2425	Excellent high-temperature strength and wear resistance, good oxidation and sulfidation resistance.
STEL31	Stellite 31	10.5	25.5	0.5	1	1	-	7.5	Bal	2*	-	-	-	-	2540	High-temperature superalloy with high tensile and creep properties and resistance to oxidizing and rea Mainly used in gas turbine engines in areas subject to hot gas erosion.
NC13	MO-RE 1	35	28	0.5	2	2.5	-	1.4	-	Bal	-	-	3600	1200	-	Has additional strength over HP material for 1600-2100°F.
NC17W	T63W	35	22	0.5	2	2.5	-	5	-	Bal	-	-	-	-	2450	Similar to HP alloy, but with the addition of tungsten to provide additional strength at temperatures b
NC14	Supertherm	35	26	0.5	2	2.5	-	5	15	Bal	0.7 Cb	-	4250	2000	-	High strength alloy providing exceptional strength at temperatures up to 2150°F. Used for radiant tu
NC16W	MO-RE 2	35	33	0.5	2	2.5	-	16	-	Bal	-	-	-	1250	-	Excellent high temperature strength and oxidation resistance for applications exceeding 2100°F. Mu
NC20	HR120	37	25	0.05	1	1	2	2	2	Bal	0.1 Al, 0.4 Ti	5100	1100	-	2375	Similar to wrought 120, high strength alloy up to 2000°F. Offers similar strength characteristics to a
NC19	333	45	25	0.08*	2	2	3	3	3	Bal	-	2450	770	-	2400	Similar to wrought 333, excellent carburization resistance.
NC9MO	Hastelloy X	47	22	0.2*	1	1	9	0.6	1.5	Bal	-	5800	1900	-	2400	Exceptional oxidation and high strength characteristics at temperatures up to 2200°F. Used for turbi
NC11	22H	48	28	0.5	2	2.5	-	5	-	Bal	-	-	2300	1050	-	Popular alloy for high temperature applications (1800-2150°F.). Excellent high-temperature strengt furnace parts, and baskets.
NC11C	S22H	48	28	0.5	2	2	-	5	3	Bal	-	-	3200	1600	-	Similar to NC11 with cobalt added to provide greater strength at elevated temperatures.
NC22W	KHRSA	50	30	0.4	0.5	0.5	-	13	-	Bal	-	-	2650	1550	2400	Excellent oxidation resistance and high temperature strength, suitable for many harsh operating envir
HXM40	HX (MOD)	69	17	0.4	2	2.5	0.50*	-	-	Bal	-	3200	1600	600	2350	An upgraded version of HX material which exhibits greater resistance to thermal shock.
NC18W	H230	Bal	22	0.1	0.6	0.5	2	14	-	Bal	0.35 Al	4400	1100	-	2400	Similar to wrought 230, with excellent oxidation and carburization resistance up to 2000°F, and hig
INC600	Inconel 600	72 min	16	0.15*	1	0.5	-	-	-	Bal	-	-	-	-	2400	Similar to wrought Inconel 600, with excellent thermal fatigue properties. Suitable for severe water of

** Some data on creep stress has been extrapolated from published information on comparable materials.

atures and Applications

Jsed for pouring spouts for copper and brass, refinery fittings, and grate bars.

les and billet skids where heat and wear resistance are needed.

tips, and rabble arms.

where embrittlement from sigma formation is acceptable, and resistance to carburization is not critical.

rength up to 1900°F. Used for furnace parts, radiant tubes, reformer tubes, and furnace rolls.

ing sulfur. Used for furnace parts, radiant tubes, and furnace rolls. Susceptible to embrittlement

istance to thermal shock. Used for furnace parts, trays, and furnace rolls.

ating and cooling. Used for furnace parts, trays, baskets, annealing fixtures, muffles, radiant tubes,

e to embrittlement from sigma formation. Used for furnace parts, trays, radiant tubes, and reformer tubes.

nd carburization resistance up to 2000°F. Most useful alloy for carburization applications with an oil quench hains, and muffles.

up to 2050°F. Used for trays, fixtures, retorts, and enameling tools where severe thermal shock is present.

0°F. This grade is used more commonly than HW alloy for severe applications with water or synthetic ermal shock is present.

tures and Applications

e. Used for turbine engine parts, bearings, furnace parts where high-temperature wear resistance is required.

reducing atmospheres up to 2100°F. Excellent resistance to thermal and mechanical shock.

es between 1600-2100°F.

t tubes, furnace rolls, walking beams, and furnace parts where high temperature strength is required.

Must be preheated for welding.

to other super alloys.

urbine engines, furnace rolls, retorts, muffles, and trays to provide greater service life in severe applications. ngth and oxidation and carburization resistance. Used for radiant tubes, trays, fixtures, retorts,

nvironments. Suitable for long-term service up to 2200°F for radiant tubes, furnace rolls, fixtures.

high strength up to 1900°F.

ter and synthetic quench applications.

STANDARD SPECIFICATIONS FOR ASTM A297 - STEEL CASTINGS, HEAT RESISTANT, FOR GENERAL APPLICATIONS (Other analyses available upon request)